3.7.48 \(\int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx\) [648]

3.7.48.1 Optimal result
3.7.48.2 Mathematica [A] (verified)
3.7.48.3 Rubi [A] (verified)
3.7.48.4 Maple [B] (warning: unable to verify)
3.7.48.5 Fricas [B] (verification not implemented)
3.7.48.6 Sympy [F(-1)]
3.7.48.7 Maxima [F]
3.7.48.8 Giac [F]
3.7.48.9 Mupad [F(-1)]

3.7.48.1 Optimal result

Integrand size = 35, antiderivative size = 341 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\frac {(i A-B) \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a-b)^{5/2} d}-\frac {(i A+B) \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a+b)^{5/2} d}-\frac {2 b \left (3 a^2 A+4 A b^2-a b B\right )}{3 a^2 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} (a+b \tan (c+d x))^{3/2}}-\frac {2 A \sqrt {\cot (c+d x)}}{a d (a+b \tan (c+d x))^{3/2}}-\frac {2 b \left (3 a^4 A+17 a^2 A b^2+8 A b^4-8 a^3 b B-2 a b^3 B\right )}{3 a^3 \left (a^2+b^2\right )^2 d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}} \]

output
(I*A-B)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot( 
d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a-b)^(5/2)/d-(I*A+B)*arctanh((I*a+b)^(1/2 
)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/ 
2)/(I*a+b)^(5/2)/d-2/3*b*(3*A*a^4+17*A*a^2*b^2+8*A*b^4-8*B*a^3*b-2*B*a*b^3 
)/a^3/(a^2+b^2)^2/d/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2)-2/3*b*(3*A*a^2 
+4*A*b^2-B*a*b)/a^2/(a^2+b^2)/d/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(3/2)-2* 
A*cot(d*x+c)^(1/2)/a/d/(a+b*tan(d*x+c))^(3/2)
 
3.7.48.2 Mathematica [A] (verified)

Time = 4.43 (sec) , antiderivative size = 334, normalized size of antiderivative = 0.98 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\frac {\sqrt {\cot (c+d x)} \left (-\frac {6 A}{(a+b \tan (c+d x))^{3/2}}-\frac {2 b \left (3 a^2 A+4 A b^2-a b B\right ) \tan (c+d x)}{a \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\sqrt {\tan (c+d x)} \left (3 \sqrt [4]{-1} a^3 \left (\frac {(a+i b)^2 (A-i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {-a+i b}}-\frac {(a-i b)^2 (A+i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {a+i b}}\right )-\frac {2 b \left (3 a^4 A+17 a^2 A b^2+8 A b^4-8 a^3 b B-2 a b^3 B\right ) \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{a^2 \left (a^2+b^2\right )^2}\right )}{3 a d} \]

input
Integrate[(Cot[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^( 
5/2),x]
 
output
(Sqrt[Cot[c + d*x]]*((-6*A)/(a + b*Tan[c + d*x])^(3/2) - (2*b*(3*a^2*A + 4 
*A*b^2 - a*b*B)*Tan[c + d*x])/(a*(a^2 + b^2)*(a + b*Tan[c + d*x])^(3/2)) + 
 (Sqrt[Tan[c + d*x]]*(3*(-1)^(1/4)*a^3*(((a + I*b)^2*(A - I*B)*ArcTan[((-1 
)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt 
[-a + I*b] - ((a - I*b)^2*(A + I*B)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[ 
Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[a + I*b]) - (2*b*(3*a^4*A + 
 17*a^2*A*b^2 + 8*A*b^4 - 8*a^3*b*B - 2*a*b^3*B)*Sqrt[Tan[c + d*x]])/Sqrt[ 
a + b*Tan[c + d*x]]))/(a^2*(a^2 + b^2)^2)))/(3*a*d)
 
3.7.48.3 Rubi [A] (verified)

Time = 2.22 (sec) , antiderivative size = 382, normalized size of antiderivative = 1.12, number of steps used = 19, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.514, Rules used = {3042, 4729, 3042, 4092, 27, 3042, 4132, 27, 3042, 4132, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot (c+d x)^{3/2} (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {A+B \tan (c+d x)}{\tan (c+d x)^{3/2} (a+b \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4092

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 \int \frac {4 A b \tan ^2(c+d x)+a A \tan (c+d x)+4 A b-a B}{2 \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}}dx}{a}-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\int \frac {4 A b \tan ^2(c+d x)+a A \tan (c+d x)+4 A b-a B}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}}dx}{a}-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\int \frac {4 A b \tan (c+d x)^2+a A \tan (c+d x)+4 A b-a B}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}}dx}{a}-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 4132

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {2 \int \frac {-3 B a^3+9 A b a^2+3 (a A+b B) \tan (c+d x) a^2-2 b^2 B a+8 A b^3+2 b \left (3 A a^2-b B a+4 A b^2\right ) \tan ^2(c+d x)}{2 \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 a \left (a^2+b^2\right )}+\frac {2 b \left (3 a^2 A-a b B+4 A b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\int \frac {-3 B a^3+9 A b a^2+3 (a A+b B) \tan (c+d x) a^2-2 b^2 B a+8 A b^3+2 b \left (3 A a^2-b B a+4 A b^2\right ) \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 a \left (a^2+b^2\right )}+\frac {2 b \left (3 a^2 A-a b B+4 A b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\int \frac {-3 B a^3+9 A b a^2+3 (a A+b B) \tan (c+d x) a^2-2 b^2 B a+8 A b^3+2 b \left (3 A a^2-b B a+4 A b^2\right ) \tan (c+d x)^2}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 a \left (a^2+b^2\right )}+\frac {2 b \left (3 a^2 A-a b B+4 A b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 4132

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\frac {2 \int \frac {3 \left (\left (-B a^2+2 A b a+b^2 B\right ) a^3+\left (A a^2+2 b B a-A b^2\right ) \tan (c+d x) a^3\right )}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (3 a^4 A-8 a^3 b B+17 a^2 A b^2-2 a b^3 B+8 A b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 a \left (a^2+b^2\right )}+\frac {2 b \left (3 a^2 A-a b B+4 A b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\frac {3 \int \frac {\left (-B a^2+2 A b a+b^2 B\right ) a^3+\left (A a^2+2 b B a-A b^2\right ) \tan (c+d x) a^3}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (3 a^4 A-8 a^3 b B+17 a^2 A b^2-2 a b^3 B+8 A b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 a \left (a^2+b^2\right )}+\frac {2 b \left (3 a^2 A-a b B+4 A b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\frac {3 \int \frac {\left (-B a^2+2 A b a+b^2 B\right ) a^3+\left (A a^2+2 b B a-A b^2\right ) \tan (c+d x) a^3}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (3 a^4 A-8 a^3 b B+17 a^2 A b^2-2 a b^3 B+8 A b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 a \left (a^2+b^2\right )}+\frac {2 b \left (3 a^2 A-a b B+4 A b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 4099

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}-\frac {\frac {2 b \left (3 a^2 A-a b B+4 A b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (3 a^4 A-8 a^3 b B+17 a^2 A b^2-2 a b^3 B+8 A b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {1}{2} a^3 (a-i b)^2 (-B+i A) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} a^3 (a+i b)^2 (B+i A) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}-\frac {\frac {2 b \left (3 a^2 A-a b B+4 A b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (3 a^4 A-8 a^3 b B+17 a^2 A b^2-2 a b^3 B+8 A b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {1}{2} a^3 (a-i b)^2 (-B+i A) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} a^3 (a+i b)^2 (B+i A) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}}{a}\right )\)

\(\Big \downarrow \) 4098

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}-\frac {\frac {2 b \left (3 a^2 A-a b B+4 A b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (3 a^4 A-8 a^3 b B+17 a^2 A b^2-2 a b^3 B+8 A b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^3 (a-i b)^2 (-B+i A) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}-\frac {a^3 (a+i b)^2 (B+i A) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}}{a}\right )\)

\(\Big \downarrow \) 104

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}-\frac {\frac {2 b \left (3 a^2 A-a b B+4 A b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (3 a^4 A-8 a^3 b B+17 a^2 A b^2-2 a b^3 B+8 A b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^3 (a-i b)^2 (-B+i A) \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}-\frac {a^3 (a+i b)^2 (B+i A) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}}{a}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}-\frac {\frac {2 b \left (3 a^2 A-a b B+4 A b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (3 a^4 A-8 a^3 b B+17 a^2 A b^2-2 a b^3 B+8 A b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^3 (a-i b)^2 (-B+i A) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}-\frac {a^3 (a+i b)^2 (B+i A) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}}{a}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}-\frac {\frac {2 b \left (3 a^2 A-a b B+4 A b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {\frac {2 b \left (3 a^4 A-8 a^3 b B+17 a^2 A b^2-2 a b^3 B+8 A b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^3 (a-i b)^2 (-B+i A) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}-\frac {a^3 (a+i b)^2 (B+i A) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}}{a}\right )\)

input
Int[(Cot[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(5/2),x 
]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((-2*A)/(a*d*Sqrt[Tan[c + d*x]]*(a + 
 b*Tan[c + d*x])^(3/2)) - ((2*b*(3*a^2*A + 4*A*b^2 - a*b*B)*Sqrt[Tan[c + d 
*x]])/(3*a*(a^2 + b^2)*d*(a + b*Tan[c + d*x])^(3/2)) + ((3*((a^3*(a - I*b) 
^2*(I*A - B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + 
d*x]]])/(Sqrt[I*a - b]*d) - (a^3*(a + I*b)^2*(I*A + B)*ArcTanh[(Sqrt[I*a + 
 b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a + b]*d)))/(a* 
(a^2 + b^2)) + (2*b*(3*a^4*A + 17*a^2*A*b^2 + 8*A*b^4 - 8*a^3*b*B - 2*a*b^ 
3*B)*Sqrt[Tan[c + d*x]])/(a*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]]))/(3*a* 
(a^2 + b^2)))/a)
 

3.7.48.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4092
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1) 
/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^ 
2 + b^2))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b* 
B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2 
)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n 
+ 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && 
 NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] 
&& (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] 
 || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.7.48.4 Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 2.84 (sec) , antiderivative size = 2976685, normalized size of antiderivative = 8729.28

\[\text {output too large to display}\]

input
int(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x)
 
output
result too large to display
 
3.7.48.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 27817 vs. \(2 (289) = 578\).

Time = 14.41 (sec) , antiderivative size = 27817, normalized size of antiderivative = 81.57 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algo 
rithm="fricas")
 
output
Too large to include
 
3.7.48.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(cot(d*x+c)**(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(5/2),x)
 
output
Timed out
 
3.7.48.7 Maxima [F]

\[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \cot \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algo 
rithm="maxima")
 
output
integrate((B*tan(d*x + c) + A)*cot(d*x + c)^(3/2)/(b*tan(d*x + c) + a)^(5/ 
2), x)
 
3.7.48.8 Giac [F]

\[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \cot \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algo 
rithm="giac")
 
output
integrate((B*tan(d*x + c) + A)*cot(d*x + c)^(3/2)/(b*tan(d*x + c) + a)^(5/ 
2), x)
 
3.7.48.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx=\int \frac {{\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )}{{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{5/2}} \,d x \]

input
int((cot(c + d*x)^(3/2)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(5/2),x 
)
 
output
int((cot(c + d*x)^(3/2)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(5/2), 
x)